Конец августа встретил меня шквалом всевозможных постов и видео в соцсетях, посвящённых подготовке к ЕГЭ по математике. Это вызвало чувство гордости за коллег и спокойствие за выпускников.
Оба эти чувства (гордости и спокойствия) длились не долго.
В результате знакомства с горным потоком информации я просто пожалела, что я не Бенкендорф.
Некоторых авторов и спикеров я с удовольствием лишила бы права голоса и «профессиональной переписки».
Я уже не обращаю внимания (хотя нет, обращаю и стараюсь написать соответствующий коммент) на обороты типа «решим квадратное уравнение по теореме Виета». Об этом я уже говорила
(https://vk.com/@metodikamatematiki312-mozhno-li-nahodit-korni-kvadratnogo-uravneniya-s-pomoschu-te ), повторяться не хочу.
Но просто апофеоз моего недовольства вызвал один факт.
Есть на просторах интернета всякие видео, касты и прочие интерактивности, среди которых демонстрируются и разборы решения всевозможных задач.
Один такой разбор я и увидела.
Задачу для решения взяли из книжки (я намеренно из соображений профессиональной этики не называю авторов ни видео, ни книги). Книга была создана доктором физмат наук, профессором.
Суть задачи в следующем.
Необходимо решить уравнение:
Процесс решения у меня не вызвал вопросов:
При всех допустимых значениях неизвестной равенство будет истинным.
А вот дальше пошёл просто трэш!
Оказывается, что допустимыми значениями неизвестной являются все числа из множества (0; 1) ˅ (1; +∞)!
Нет, если бы речь изначально шла об уравнении
я бы и слова не сказала. Но ведь оно совсем не равносильно первоначально заданному уравнению.
Напомню, что по всем математическим канонам (и, кстати сказать, без всяких исключений!) показатель корня должен быть числом натуральным и не меньшим двух. То есть x может быть таким, чтобы десятичный логарифм lg x имел только натуральные значения и, кроме того, большие 1. Тогда корнями исходного уравнения будут степени числа 10, начиная со второй: 100, 1000, 10000 и так далее.
На мою поправку автор видео сослался на авторитет автора книги (дескать, ответ сошёлся с тем, который дал профессор).
И вот теперь я в раздумье: а сколько ещё таких же ляпов у нас тиражируется как в интернете, так и в книгах, редактируемых несведущими в математических тонкостях специалистами?
Профессору и доктору наук простят этот, по правде говоря совершенно неоправданный, кульбит по отождествлению степени
с действительным показателем и корня натуральной степени.
А вот студентам и ученикам – нет!
Остаётся надеяться, что у грамотных школьников, склонных
к решению подобного рода задач, всё-таки сформирована критичность мышления.
… И да, меня беспокоит эта бесконтрольная стихия не всегда безупречно грамотных и корректных математических сведений, которая сметает на своём пути взращенные за одиннадцать школьных лет знания в неокрепших умах наших выпускников.